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Abstract

-
For a second order nonautonomous singularly perturbed ordinary differential

equation with Neumann boundary conditions, the existence of single transition
layer solutions is proved by wusing the method of Liapunov-Schmidt. The

method also gives the stability of these solutions as an equilibrium point of a

- !~ / o I Tt
parabolic equation. S ! S ‘mp/ﬂ-/ N
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1. Introduction
For € >0 a small parameter, we consider the following
er .2tion

(1.1) u = e2u" + f(u,x) -1l <x<1,t30

parabolic

where G = 8u/8t, u' = 8u/9x and impose the following boundary conditions

(1.2) u'(-I,t) = u'(l,t) = 0

The function f will satisfy the following assumptions:

(A-1) f : R x [-1,I] = R is a C®function of (u,x) with f(0,x) = 0,
f(l,x) = 0
3
f,
)
' (A-2) There is a positive constant B such that
Y
2
£, 0.x), f (1,x) ¢ -38° for x € [-1,1]
‘ (A-3)  Let J(x) = [} f(ux)du, x € [1,]. Then J(0) = 0,
d
. —_ J(x)l #0 and
o dx x=0
. u
J f(v,0)dv < 0 for u € (0,]).
! 0
)
|
! An example of a function f satisfying (A-1) - (A-3) is the cubic
: : (1.3) f(u,x) = u(l - u)(u - a(x))
[]
P where
K
4 ‘ (1.4) a(0) = % a’'(0) #0, 0 <a(x) <1 for x € [-1,]]
)
' We intend to discuss the existence of equilibrium solutions of (1.1), (1.2)
P with a single transition layer at x = 0; that is, those solutions which, as
]
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€ = 0, converge to zero (resp., onc) uniformly on any compact subset of [-1,0)
and converge to one (resp., zero) uniformly on any compact set of (0,1]. We
also discuss the stability properties of such solutions.

In fact, we prove the following theorem.

Theorem 1.1. (i) There is an €, > 0 and two single transition layer solutions
uj(x,e), =010 < € € ¢, such that, for any & > 0,
lim u(x,e) = j wuniformly on [-1,-8],
J
€e~0

uj(x,e) is asymptotically stable if

(1.5) (-1)Yu} (0,6)3'(0) > 0
and unstale with the dimension of the wunstable manifold equal to one if

(1)} (0,6) '(0) < 0.

Before describing the method of proof, let us first emphasize that this
result is certainly not surprising and is probably known to some people. In
fact, the existence of equilibrium solutions of the above type follows from the
work of Fife [1976], Ito [1984], Mimura, Tabata and Hosono [1980). The
methed employed there is to reflect the solution through -1 and +1, solve two
distinct boundary value problems on the intervals [-2,0] and [0,2] and then use
the boundary condition at zero to match the derivatives of the solutions.

For the case of the cubic (1.3), (1.4), Angenent, Mallet-Paret and Peletier
[1987) have obtained the stability condition (1.5). They obtained existence using
a comparison principle and results of Matano [10] on existence of stable

solutions. Some of the techniques used there are of assistance to us in discussing
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all solutions for the general case. One could also obtain the stability properties
of the solutions by using the method of Fujii and Nisihura [1985] involving a
singular limit cigenvalue problem.

The primary objective of this paper is to prove this theorem by using a
method which will yield the existence and stability at the same time. More
specifically, we begin with a smooth approximate equilibrium solution U(x,e) of
the equation which exhibits a transition layer at x = 0 and then consider the
dynamics of the flow in a neighborhood of this approximate solution. The

variational equation near this approximate solution has the form

(1.6) u, = 20 + G(e) + F(u,¢€)

where

(1.7) 2€u = 2" + £ (U(x,€),0)u

(1.8) G(e)(x) = €2U"(x,€) + f(U(x,€),x)

(1.9) F(u,e) = f(U(x,e) + u,x) - f(U(x,€),x) - f (U(x,€),x)u

The first step in any analysis of Equation (1.6) must involve an
understanding of the operator £ : C3[-1,1] = C%-1,1] where C2(-1,1] is the
space of C2-functions satisfying the boundary conditions (1.2) with |®]2e =
sup‘[lcp(x)| + e|q>'(x)| + e’|‘p"(x)|]. By using a Prufer transformation and
analyzing the behavior of the corresponding angle, we show there is exactly one
cigenvalue ), (¢) of 2¢ which approaches zero as € - 0 and )1'(0) is
proportional to J'(O). Furthermore, there is an €, > 0, v > 0 such that the
remaining cigenvalues are € -v for 0 < € € ¢, The use of the Prufer
transformation in the study of stability of solutions of parabolic equations has

been used previously by Fusco and Hale [1985), Hale and Rocha [1985), Jones

[1984], and Rocha [1985], [1986].
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S After obtaining this information about 2¢, two approaches naturally
..' suggest themselves. One is to use a center manifold theorem to reduce the
N . . . . .

dynamics near the approximate solution to a one dimensional problem. The
43_ other is to use the method of Liapunov-Schmidt to obtain a one dimensional
> bifurcation function whose zeros determine the equilibrium solutions. In some
o
3 situations for which it is known that both of these methods can be applied, the
14
h flow of the vector field defined by the bifurcation function is equivalent to the
[ flow on the center manifold (see, for example, Chow and Hale [1982]).
: In this paper, we consider the method of Liapunov-Schmidt for the
2
! existence of the equilibrium solutions. The stability properties of the solutions
- are obtained by discussing the eigenvalues of the linear variational equation
N directly. The existence of the center manifold and its relationship to the
'f bifurcation function will appear in a later publication.

To apply the method of Liapunov-Schmidt, the accuracy of the initial
. approximation U(x,¢) plays a crucial role. To see this, let ¢ (x,6) be an
o eigenfunction of 2¢ corresponding to 2 (¢), and consider the equation for
x equilibrium solutions
: 2€u + G(e) + F(ue) = 0.
., If u = ap, + v where I}lxpl(x,e)v(x)dx =0 and « is a scalar, then the
! method of Liapunov-Schmidt yields a function v*(e«e) defined for o€ small,
: v*(0,0) = 0. Once v*(«e) is known, the bifurcation function is given by
?: 1
Bae) = 30 + | 00,0000 + Flanxe) + vi@am.o|ax/ oo,

o -1 L
[}
2 The desired transition layer solutions are in one-to-one correspondence with the
P
. zeros of B(oa€).
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'.: ' The Taylor series for B(«e€) will have the form
3 B(a,€) = B(e) + Y(e)a + O(?)
)
,::: _ as « = 0. The Taylor series of the terms B(¢), ¥e) in € depend very
E:. strongly upon the initial approximation U(x,e) to the equilibrium solution of

(1.1), (1.2); that is, upon the properties of the function G(e) in (1.8). More
j specifically, suppose G(e¢) 1is only O(e) as €¢ - 0 and

1
I ¢y(x,6)G(e)(x)dx = Bye + o(¢) as e =0

S -1
"
E with B, # 0. The function v*(ee) then will satisfy v*(ae) = O(e + «?) as
\ €, - 0 and
% B(xe) = [Bye + o(€)] + [Y,e + o(€)la + O(ad)
where 7, is determined from the first ecigenvalue of ¢ and the O(e)
: term in  v*0,¢). In this case, the equation B(aoe) = 0 will not have a
2 solution o*(¢) which vanishes when € = 0. Thus, there is no equilibrium
- solution of (1.1), (1.2) which is a perturbation of U(x,e) in the direction of
: the eigenfunction ¢,(x,e).
" If one wants to obtain existence of the equilibrium solutin (as well as its
__; stability) by perturbing an approximation solution in the direction of the
_‘-;'. eigenfunction  ¢,(x,€), then the above reasoning implies that the initial
,.- approximation must be more accurate. If we suppose that U(x,e) is such that
5 G(e) is O(e?) as € - 0, then v*xe) = O(e? + o) and the bifurcation
o\ function B(we) has B(e) = O(e?) and 7Y(e) = 7o(€) + O(e?) as € =0, 75(0)
& # 0. This implies that, if B(ce¢) = 0, then a = O(¢) as € = 0, and there is
Ny
X an exact equilibrium solution near U(x,e) which is a perturbation in the
K
; direction of the first cigenfunction @,(x,€).
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Sections 2,3, and 4 are devoted respectively to the discussion of the
approximate solution, the linear operator £€¢ and the application of the method
\ of Liapunov-Schmidt.

It is possible that the function J(x) in (A-3) could have more than one
zero. In this case, solutions with several transition layers may occur, a situation
which is discussed in Section 5. It is also possible that the function f(u,x)

does not have zeros which are constant in x as in hypothesis (A-1). The

modifications that are necessary to handle this case are discussed in Section 6.
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2. An Approximation

In this section, we describe a way to obtain an approximation to the
equilibrium solutions of (1.1), (1.2) with a single transition layer under the
hypotheses (A-1) - (A-3). If wu(x;e) 1is an equilibrium solution and we let
z(t,€) = u(et,e), "-" = d/dt, then
(2.1) Z + f(z,et) =
on -Y/¢ < t < Y/¢ with the boundatry conditions z = 0 at t = ze'. To
obtain the approximate solution, we let
(2.2) 2(t,€) = zo(t) + €z,(t) + O(e?)

and formally equate powers of € in (2.1), then

(2.3) Z, + f(z,,0) = 0
(2.4) 7, + [ (2,(.0)z, + [ (z(1)),0)t = 0

for t € R The boundary conditions are

(2.5) zy(-®) = 0, z4(+=) = 1,
(2.6) z,(¢®) = 0 .
The function z; will give a solution with transition from 0 to 1. For the casc

of a transition from 1 to 0, one imposes the conditions zy(-®) = 1, z,(+=) =
instead of (2.5).

The conditions (A-1) and (A-2) imply that Equation (2.3) has equilibrium
points  (0,0), (1,0) in the (zy,Z,) phase plane which are hyperbolic saddle
points. Furthermore, Condtion (A-3) implies that there is a heteroclinic orbit
(z5(1,7), Z4(1,7)) which connects the equilibrium point (0,0) to the equilibrium
point (1,0). The constant 7Y € (0,1) is the initial value of z,(t;7) : that is,
z,(0,7) = 7, and uniquely specifies the heteroclinic orbit. Moreover, there is a

constant k, > 0 such that

L) ,\'-F-I'I' _'_.a .r_\ .a. .r.(_‘.r\ % ._\..'-‘_.»_\e\._-::._.c\.n_.:.
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max {|z4(t7) - 1], |ZtN]) € ke, 13 0
@ max {|zo(t.0)[, |Zg(t7) [} & koe?Bt, t < 0.

With this choice of z(t,7), one can now begin to discuss a solution z,(t)
of (2.4) which satisfies the boundary condition (2.6). The linear equation

Z, + [ (z,(t),0)z, = 0

has the property that the only bounded solution on R is a multiple of Z,(1,7).
Using a well known theory based on exponential dichotomy and the Fredholm
alternative (see, for example, Chow and Hale, [1982, Sec. 11.3], Hale [1984, pp.
123 ]), the equation (2.4) has a solution which is bounded on R if and only
if

(2.8) I Zo(t, M (24(t,7),0)tdt = 0.

Therefore, condition (2.8) must be satisfied in order to obtain a solution of (2.4)
satisfying (2.6).

We now show that there is a unique <y € (0,1) such that (2.8) is satisfied.
To see this, let

1 u
Con) = [ 2t ot Ot = [t [ r2rmr¥avian
® 0 v

in which F(u) = [ f(s,0)ds. Since

d % Ko

d—7 Co(?) = - [-2F(7)] f(u,0)du = -[-2F(?)]7™) (0) # 0
()}

it follows that Co(?) is strictly monotone. On the other hand, F(7) = 0(y?) as

7 -0 and F() = O(y-1)®>) as v = 1. Therefore, [CoM| == as 7 =0 or

1 and there is a unique 7% in (0,1)such that (2.8) holds.

Let us choose 7 so that (2.8) holds and now designate zy(1,7) by zy(1).

L R R O S o S NI P B Ay Be g ~ . TN "ﬁrﬁ"\ S R Y Y e T 'n"-’\ N N IO DR I Ny
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Then there is a solution of (2.4) bounded on R In fact, there is a solution
which is a continuous linear functional in the uniform topology on R of the
forcing function f,(zo(1),00t in (2.4). Since zyt) satisfies the estimate (2.7)

and the forcing term satisfies
If(2gD.0t] € ke B t e R

it follows that z,(1) satisfies the estimate
(2.9) max (|z,(1)|, |2,()]) € ke?B"! ¢t € R
for some positive constant k,.
Now, let §4(x), {,(x) be C-cutoff functions satisfying
1 |x] € /4
§o(x) = { O [x] > /2
0 € {o(x) €1, x €[-1,1]

0 X € [‘I,O]
£ 4x)
1 - §o(x) x €]0,1].
and let
(2.10) Z(te) = zo(t) + €z,(t)
(2.11) U(x,€) = {,(x)Z (x/€,€) + { (x).

The function U wijll be our approximation to the equilibrium solution of
(1.1), (1.2). If we make the transformation of variables,
(2.12) u — U(x,e) + u

in (1.1), then the new function u must satisfy the differential equation

(2.13) gtu— = 2¢u + G(e) + F(u,e)
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and the boundary conditions (1.2), where

(2.14) 2y = e?u" +f (U(x,€),x)u

(2.15) G(e)(x) = €2U"(x,6) + f(U(x,€),x)

(2.16) F(u,e)(x) = f(U(x,€e) + u,x) - f(U(x,€),x) - fu(U(x,e),x)u.

As is seen from (2.15), G(¢) measures how accurately U(x,e) approximates the
equilibrium solution of (1.1), (1.2). The following lemma partly justifies the

expansion in (2.2).

Lemma 2.1.  sup |G(e)(x)| = O(¢’) as ¢ = 0.
x€[-1,1]
Proof. Let us first write G(e)(x) explicitly:
G(e)(x) = €2U"(x,€) + f(U(x,),%)
= Lo(xNZg(x/€) + €Z,(x/€)]
+ 2e{o(x)[zy(x/€) + €Z,(x/€)]
+ 2 M)zg(x/€) + ezy(x/€)] + €2LM(x)
+ F(Lo(x)zo(x/€) + €z,(x/€)] + §, (x),x).
From the choice of the cut-off functions {s» §,, one easily obtains the
following estimates:
a) |x] » /2
|G(eXx)| = |f(§,(x).x)] = O
-l 6 x € - 14
|G(eXx)| € sup (|Zy(x/€)| + €|Zy(x/€)|; x € [-1/2, -1/4])

+ 26|05 |0 SUP (|Z(x/€) + €/i,(x/€)|; x € [-1/2, -1/4])

+ €180 SUP (|zo(x/€)| + €|z,(x/O)|; x € [}/2, -1/4])

-B/2¢

€ce

4
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in which ¢ is a positive constant independent of x and € > 0.
c) e ¢ x € 1/2
|G(e)(x)| € sup {|Zo(x/€)| + €|Zy(x/€)|; x € ['/4, }/2])
+ 26|88 |o SuP (|Zo(x/€)| + €|Z,(x/€)|; x € (}/4, 1/2))

+ Lo sup {|zo(x/€) - 1| + €|zy(x/€)|; x € ['/4, 1/2])

: < ¢ e-B/2e
: d) |x] € /4
N Gle)(x) = f(zy(x/¢€) + €z,(x/€),x) - f(zy(x/¢€), 0)
E -€[f (zo(x/€),0)z,(x/€) + f (zy(x/€),0)x/¢€]
: By applying the mean value theorem, one finds a © = B(x,e), 0 € 8(x,e) € 1,
such that, for |x| € X
‘ (2.17) Gle)(x) = 3, .(zo(x/€) + Bez (x/€),0x)[€z,(x/€)]?
+ fux(zo(x/e) + Bez,(x/¢€),0x)xz,(x/¢€)e€
: + M _(z,(x/€) + Bez,(x/¢€),8x)x?
: = €d £, (z(x/€) + Bez,(x/€),8x)z,(x/€)?
; + £ (zo(x/€) + Bez,(x/€),8x) & z,(x/¢€)
+ 3£ (z4(x/€) + Bez,(x/€),0x)(%)?)
Since zj(t), z,(t) satisfy the estimates (2.7), (2.9) and f_(0,x) = 0 = f_(1,x),
the function
f 1 £,z + €6z,(1), Bet)z (t)?
: + £ (zo(t) + €8z(t), Bet)tz(t)
+ 3£, (2,(t) + €8z,(t), Bet)?
is bounded on R as a function of t, which together with (2.17) implies
: xg}:_glxl|0(e)(x)| € c €2
]

!
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Since “I% e? eB/2€ _ 0 the estimates in a) ~ d) imply ’ s’
€ »

sup  |{G(e)(x)| € Ce? as € 40
Ixt €1

PR SNy N

for some positive constant C. The proof is complete.
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3. Properties of the linear operator

In this section, we intend to discuss the spectral properties of the linear

operator

and

2¢ in (2.14). Let

X = (u € CH-1,I}; u'¢-1) = 0 = u'(1))
Y = CY-1,1].

[Ulze = {ulo * €]u'|o *+ €*|u"|o for u € X.

We consider 2¢ : X = Y and prove the following

Theorem 3.1. There is an €, > O such that the following assertions are valid:

(i)

(ii)

(iii)

The principal eigenvalue X,(€¢) of 2¢ s simple and approaches zero as

€ 1 0.

If &x,e) is any eigenfunction corresponding to X (€), 0 < € € €, then

there is a constant k, > 0, such that
|6(x,€)| € k, |§0,6)] eBIXV/E for x| € 1.
There is a wy > 0 such that, the second eigenvalue ),(€) of

satisfies  X,(€¢) € -py for 0 < € € ¢,

To prove this result, we first observe that the eigenvalue problem

(3.1)

2€u = )u

is equivalent to the system of first order equations

(3.2),

-

eu' = u x € [-1,1]
Ev' = -[fu(U(x;e),x) - \u
v(-1) = 0 = v(I).

-------------------------
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In terms of the fast variable t = x/e, (3.2), is written as
O=v t € [-Y/e, €]
(3.3), i = {f (U(t,e),et) - Nu

u(-17¢) = 0 = u(!/¢)

in which f)(t,e) = U(et,e). It is useful to introduce polar coordinates (r,0)
defined by u = r cos 6, v = -r sin 6, in (3.2), and (3.3)y, and determine the
properties of the eigenvalues of 2€¢ from the properties of the angle 6.

The equations for (r,0) are given by

a) er' = -r[1 + ) - f (U(x,e),x)] sin 8 cos 6
(3.4),

b) €0' = [f (U(x,€),x) - )] cos?® + sin?8
and -

a) fo=-[1 + X -f(U(te), €t)] sin 8 cos 8
(3.5), ) -~

b) 8 = [f (U (t,€),et) - )] cos?8 + sin?e.

Let  0,(x,e,)) denote a unique solution of (3.4-b), with 8,(tle)) = 0.

Then it easily follows that X is an ecigenvalue of 2¢ if and only if
8 (1,6,)) = O(mod.m) (or 6+(-l,e,X) g 0(mod.m)).

Morcover, one can verify that 0 (l,e,)) (resp. 9+(-l,c,X)) is a strictly
decreasing (resp. increasing) function of X for each fixed € > 0 and
lxi_r.r_nne_(l,e,x) = ® xl_i.tlnae_(l,e,X) = -"/z.‘ Therefore, the principal cigenvalue X (€)
of 2¢ is characterized by:

8.(1,6,2,(¢)) = 0.

There is a constant 6 > 0 such that {|fu(u,x) - fu(o,x)|, |fu(l + u,x)

-f(l,x)|) ¢ B¥2 for |u| ¢ 65 and from (2.7), (2.9) and (2.11), it follows that

there exists a constant ky > 0 such that

[\ G OO0 AN Y MY N ORI A R e L AL R (L AU SR o AT X AP A0 Y Pl W AN
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[UGr€)| € ky(1ve) eBIx1/2¢ for  x <0

|U(x,€) - 1] € ky(1+€) eBx/2¢ tor x5 0.
From the condition (A-2) and the estimates above, it follows that, for any ¢t
€, satisfying the relation

(3.6) ky(14Ey ¢ /2 ¢ g,
and for any t; » t,, 0 < ¢ € €, onc has
(3.7) f(U(x,€),x) - » € 2B for |x| 3 ety || < B%2
Now let ©,(x,e,)) be solutions of the equation
[f (U(x,€),x) - 3] cos® @ + sin? & = 0
for |x| » ety [\ € B%/2, satisfying
T2 < e (x,6,)) € -
8, € ©,(x,e,)) < /3
in which o, € (0."/2) is the unique solution of

tan® @, = 282

Lemma 3.2. Suppose ?0, t—o satisfy (3.6). Then there exist constants ¢€,, 0 < €,
¢ €, kg > 0, k, > 0, B> 0 and solutions B,(x,e,)) of (3.4-b)y such that, for
€ € (0,¢,), t, 3 ty and ) € [-B%/3, B%/3), the following properties hold:
(i) |U+(x,e,\) - 0,(x,6,))| ¢ ky €, for |x| * €tq
|U’(x,e,x) - e_(x,e,)«)l € kg ¢, for |x| ?» €ty
(ii) If 8(x,e,)) is the solution of (3.4-b)y with initial value 8(-1,¢,)) (resp.
0(+1,¢6,)\)) satisfying
8(-1,¢,)) € (e+(-1,e,x) + kg€ + (n-l)n,e+(-l,e,x) - kg¢ + nm)

(resp. 0(l,¢6,)) € (©(l,6,)) + kye + nm, O (l,€,)) - kye + (n+1)m))

'~ AL OO
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for some integer n, then the following estimate is valid.

|8(x,e.)) - B(x,e,)) - nm| € k4¢:"B("'”)/6 for x € [-1,-¢t)

(resp. |8(x,€,3) - T (x,¢,)) - on| < k‘e’B("’”/e for x € [et,1))

L AP

(iii) If  O(x,e,)) is the solution of (3.4-b), with the initial value

8(-€ty,€,)) (resp. B(ety€))) at x = -€t, (resp. x = et,) satisfying

"l

8(-€ty¢,)) € (0 (-€tye,2) + kge + nm, © (-€ty,€,)) - kge + (n+l)m)

04
(resp. B(ety€,)) € (8, (ety€,)) + kge + (n-1)m, 6, (ety€,2) - kge + nm)) %
for some integer n, then the following estimate is valid;
|8(x,€,)) - T (x,¢,)) - nn| ¢ k‘ezm"‘“‘o)/‘, for x € [-1,-€tg] N
]
(resp. |8(x,e,2) - T(x,e,)) - nm| ¢ k‘c"B("'“o)/‘, for x € [ety,1]) - N
Proof of Lemma 32. To prove these results it is convenient to rewrite the y
cquation (3.4-b), in terms of coordinates around ©,(x,¢,)). For this purpose, let i
us introduce new coordinates (,¥) in (3.2), by A
L
u 11)(T o
v)] T AAY ¢
3
where A = A(x,6,)) = [-f (U(x,€),x) + X]” for |x; » €t,, One should notice
that  A(x,e,)) » v3B holds for |x| » e€t;,, and hence the change of hy
s

coordinates makes sense for |x| » €t,, Then introduce polar coordinates (p,4)
by u=pcos ¢, v = -psin . The Equations for (p,4) are given by 2
¢
A
a) €p' = -A(x,e,\)p cos 29 - ¢(A'/2A)p(l - sin 2¢] N
(3.8), TR
b) €0’ = A(x,e,)\) sin 20 - ¢(A'/2A) cos 2¢ "
8 = ©(x,e,\) and 6 = ©,(x,¢,)) are transformed into ¢ = -T2 and ¢ = 0, ' i:
|}
(]
respectively. The Neumann data © = O(mod.m) corresponds to ¢ = /4 (mod.n). .t.
The equation (3.8-b), has positively (resp. negatively) invariant strips around h
=
)
‘
[
.l
3
\
o

Ly

. . . . . ) .
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¢6="T/2 + mmn m € Z (resp. ¢ = mn) for |x| > ety The width of these
strips is given by:

tan”X(e sup |A " (x,6,0)/2A(x,60)?|) € kqe
fxl Eto

for some positive constant kq. Since A(x,e,)) 3 v3B and 8 and ¢

,‘ coordinates are related by
j tan 8/ tan (¢ + "/¢) = A(x,e,)), |x| ? ety
‘ there exists a positive constant kg, such that the interval
E (mn + ©(x,6,)) - kge, mm + ©_(x,€,)) + kg€)
: is positively invariant for the equation (3.4-b), and the interval
? (mn + e+(x,e,x) - kge, mn + e+(x,e,X) + kgy€)
is negatively invariant for the equation (3.4-b), for any integer m. Now it is
: casy to find the solutions Ft(x,e,x) of (3.4-b)y which satisfy the property (i)
in the lemma. For example, ¥ (x,e,\) is defined as the unique solution of
(3.4-b), with initial value B (-1,¢,)) = ©(-1,¢,) for x € [-1,-¢t;)] and as the
unique solution of (3.4-b), with initial value U (+ety,e,)) = © (+etye,)), for
’ x € [+et,,1].  The function U+ is defined in the similar way. This
‘: completes the proof of Part (i).
: Now considering the difference 0(x,¢,)) - §(x,6,)) and applying the mean
5 value theorem, the equation (3.4-b), vields |8(x,e,)) - B (x,e,))| ¢ k e 2Bt/
for x € [-1,-et;). All other statements in (ii), (iii) follow using the same type
“ of arguments. The proof of Lemma 3.2 is complete.

Returning to the proof of Theorem 3.1, we examine the behavior of
et(x,e,X) over the interval (-etqetyl. Let us concentrate our attention on
8,(x,6,0) for the moment. At this stage, it is convenient to use the equation

(3.5-b)0 in terms of the fast variable t = x/e¢:

"
".'i'\
GO0
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!
(3.9) 9 = f,(Z(t,€),et) cos?® + sin?6, t € [-!/4¢, /4e). .
The solutions of this equation are compared to those of s
:
(3.10) 8 = £,(z,(),0) cos?@ + sin?6, t € (-=,). ;
Let us denote by 5(:) the solution of (3.10) which corresponds to the solution
T(zo(t), Z4(t)) of (3.3), with € = 0. We show that 8,(tetye,0) and B(#ty) can 1
be made arbitrarily close by choosing € >0 small, By definition, p
tan® (-€t,,€,0) = -[-fu(Z(-eto,e), -eto)]”. On the other hand, tanU(-to) = ¢
“Zo(-tg)/Zg(-tg). One should notice that both tan ©_(-et;,e,0)0 and tanB(-ty)
have one and the same sign (negative in this :ase). Hence, we estimate .
(3.11) tan’e_(-ety,€,0) - tan?B(-t,) :
‘ £o(-to) :
= £ (Z0tg,€), -€t)) + [f(z,(-1,),0)]1%/ [2 [0 f(u,O)du] 4
By employing the expansion f(u,0) = fu(0,0)u + 0(|u|2) near u = 0, the ,
second on the right of (3.11) reduces to f (0,0) + O(|zo(-to)|). Hence, we can :
continue formula (3.11) as:
= -etof (0.x%) + £ (u*-et)-Z(-ty,€)) A
where x* € [-1,1] and u* € (0,1) are appropriate values. This gives: ‘
[0 (-€tg,€,0) - U(-t0)| € Clet, + c"B‘o] !
for some consant C > 0. The same type of arguments gives:
|8,(€tg,€,0) - Blty)| & Clety + ¢-2Bty),. .
Combining these estimates with Lemma 3.2 (i), (ii), one obtains y
|8.(-€tg,€,0) - B(-ty)| € Clety + ¢-2Btg) 4 kye + k‘c'zgu'“o)/‘ :
G12) |8, (ete,€,0) - Bltg)| € Clety + e-2Btg) 4 kge + k4e’B’“o'”/‘. ]
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‘l
R
‘40
B If  B,(te)) = B,(et,e,)), then By (te,\) are solutions of (3.5-b), with
:, ‘ 8*(te'1,e,x) = 0. Since the right hand side of (3.5-b), is bounded and solutions
"
g:: of differential equations depend continuously on initial data and parameters
'.,
0 involved, relation (3.12) implies that
N -
::: [6.(0,¢,0) - G’(O)[ ¢ Ctylety + 2Bt + kg€ + k4c'3B(""o)/‘)
:. 3.13) _ 8 5
.’:: [8,(0,€,0) - BO)| € Ctylet, + e + kye + ke? (1-€tp)/ €y
A
RY, The positive constant C does not depend on t,, € so long as t; > FO,
[}
R 0 < € € €, For any ) € (0,8%/2], onc has
o~ r
' 8_(0,6,0) = B(0,6,0) > & (0,6,)) = 8_(0,¢,))
A (3.14), 4
L 8,(0,,0) = 8,(0,6,0) < B,(0,¢,))
. -
L, and
- (9-(0,6,0) = B (0,6,0) < 8_(0,e,-)) = 0 (0,¢,-))
v (3.14)_ {
L)
» 9_,_(0,6,0) = 9+(0,€,0) > 6+(0i€9'x) - 0+(0,€,-X).
0. -
.'
[}
) Now choose t, = t(e) = = as e = 0 so that t3(e)e =0 as € = 0. Then
g relation (3.13) implies that: |G_(O,e,0) - 9+(0,e,0)| = |B_(0,e,0) - 6+(0,e,0)| -+ G0 as
k)
f,'é € = 0. Therefore, (3.14), imply that, for any X € (0,8%/2], there exists an
€5()) > 0 such that
"
" 0.(0,e,)) < 8,(0,¢,2)
X (3.15) for ¢ € (0,e4()))
' 8 (0,e,-)) > 9+(0,.e,-))
13
]
The incqualities in (3.15) imply that lim ) (¢) = 0. For, if X (¢) » 8 >0
t“ '
n for € > 0 small, then 8 (0,e,\,(¢)) € 8(0,6,6) < 8.(0,,6) € 8 (0,¢,),(¢)) for
.‘ .
1
:" € € (0,¢,(8)] which is a contradiction, since ),(¢) being the first eigenvalue
' implies 0 (0,¢,),(¢) = 8,(0,e,\ (¢)). This proves part (i) of Theorem 3.1.
,‘..
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" Part (ii) of Theorem 3.1 is easily obtained from (3.4-a), (¢) and Lemma

1

“ 3.2.

,

) In order to prove part (iii), we need the following elementary lemma.

|

i

;; Lemma 3.3. Let t_o, ?0 be fixed so that the condition (3.6) is satisfied. Then

K} the following estimate is valid.

. 0 € ©(-€ty,€,) (€)-u) - O (-etye,) (€)) € p/(tan’e, + 1)

4 0 € O (ety,€e,) (€)) - O (etg,e,) (€)-p) € p/(tan’e, + 1)

: for € € (0,6, t, » t-o, and u € [0,8%/4].

W

.' Proof. Since - My2 < © € -6, <0 and

', tan © (-ety €\ (€)-4) - tan ©_(-ety,e,) (€)) =

3 an application of the mean value theorem implies

O (-€tg,€, ) (€)-1) - O (-€tye,) () € u/(1 + tan’e).

! The statement for e, follows from the same type of arguments.

g Now consider the equation

R (3.16) €0' = [f (U(x,€),x) - X (€) + u] cos?d + sin?8

: for p € [0,82/4]. Let us denote by Gu(x,e) the solution of (3.16) with eu(-l,e)

LY

: = 0. Hence, 8y(x,¢) corresponds to the first eigenvalue of £€.  We shall give
an lower bound for u for which Gu(l,e) = N1 holds. For sufficiently small

: € > 0, say, ¢ € (0,¢,], for some €, > 0, |\1(e) - u| < B%*2 is satisfied for

‘ u € [0,82/4] and the coefficient of ¢os?8 in the right side of (3.16) satisfies

.

‘ (3.7). Therefore Lemma 3.2 applies. In order to have Ou(l,e) = M, it is

)

) necessary that:

o

) eu(eto,e) > e+(et0,e,xl(e) - i) - kge + 1.
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Y
; On the other hand, Lemma 3.2 implies
9“(-et0,e) < e_(-eto,e,xl(e) - 1) + 2kge.
\ Therefore, the inequality
. (3.17) Gu(eto,e) - eu(-eto,e) > ©_(ety,€,) (€)-p) - O (-€ty,€,M (t)-1) - 3kge + 7
] must be satisfied. Since u > 0, ee;‘ 1s estimated as
€8) € [ (U(x,€),x)-)(¢)] cos?8, + sin?6 + n
‘ Comparing the equation with the equation for 8
€8] = [f (U(x,€),x)-),(¢)] cos?@, + sin?8,
one can easily verify the existence of a constant k > 0 such that
(3.18) €8, - 8 < K8, - 8) + 1
Solving the differential inequality (3.18) over the interva! [-ety.€ety), one
obtains
| (3.19) eu(eto,e) - Gu(-eto,e)
] < B(etge) - By(-€tp,€) + [B(-€tp,€) - By (-ety€) + 2tou]eﬂ"0.
5 Applying Lemma 3.2 again, one easily finds that:
2 Bu(-eto,e) - By(-€ty€) < 6 (-€ty,€,) (€)-u) - ©(-€ty,€,x (€)) + 2kgqe€
., and further applying Lemma 3.3,
X (3.20) 8, (-€to€) - O (-€to,€) < u/(1 + tan’ey) + 2kqe.
\ Lemma 3.2 also implies that
(3.21) 0 (etn,€) - B (-ety,€) < O, (ety,€e,2(¢€)) - © (-t €% (€)) + 2kge.
; Substituting (3.20) and (3.21) into (3.19), one obtains
R .
N (3.22) B (eto,€) - 8, (-etg,€)
< e+(eto,e,x1(e)) - e_(~eto,e,xl(e)) + 2kse
1‘ + [/() + tan?@y)) + 2k4e + 2tou]e2’“
' Combining (3.17) and (3.22) and using Lemma 3.3 again one obtains,

'\\‘-\ ------------- -
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(]
(3.23) m< & + 2ks(c“_‘o + 5)e ‘
in which ®&u) = [(2 + e®0)/(1 + tane)) + 2toeﬁ“o]u Hence, for € € (0,¢,), !
with ¢, > 0 sufficiently small, (3.23) implies n/2 < &u). There are two E
cases: i
Case 1) ®B2/4) < M2 i
This means: Xy(e) = M (€) - p < X (€) - B%/4 < -B*/8 for ¢ € (0,€,). ':

Case 2). There exists a unique K, € (0,82/8] such that
®Q2u,) = m/2. :
This means X (e) = XM(€) - u < M\(€) - 2uy < -py for € € (0,¢,). This ;
)
completes the proof of part (iii) of theorem 3.1. ‘

We shall refine the estimate on X (¢) as € = 0, in the following \
Lemma 3.4. The first eigenvalue )\ (¢) of 2€  satisfies

M(e) = K€ + o(e) as € =~ 0 h
where K, = -J'(O)/I: z'o(t)zdt and lex_.ns o(e)/e = 0. f
Proof. Let &,(x,e) be a principal eigenfunction of 2¢  normalized so that
$,(0,e) = Z40). This normalization is always possible since @¢,(x,e) is of s
constant sign on [-1,1] and Z4,(0) # 0.

If ¥,(t,e) = ¢,(et,e), then al satisfies the equation E
(3.24) B, + [ (U(LE).e)B = X ().
By Theorem 3.1 (ii) and the normalization above, |¢1(-,e)|0 is bounded for
€ € (O,eo], as well as |fu(6(~,e),et)|0 and (¢). The equation (3.24) implies
that |5(-,e)|0 is bounded. The interpolation inequality |u'|0 € ajul, + ::
(2/a)[u"|0 for any o > 0 implies that |$(~,e)|0 is bounded. Applying »
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the Ascoli-Arzela’s theorem and the equation (3.24) repeatedly, one finds that
(M (€),®(-,€)) is precompact in R x C} (R).
On the other hand, the proof of Theorem 3.1 (i) shows that (0,3 (€)) -

B(0) as € - 0 and hence

(B(0,6), B(0,)) = (24(0), Z4(0)) as € ~ 0.
Since the solution @(t,e) depends continuously on the initial data (P(0,¢),
$(0,e)) and the parameter €, the only possible limit of @(-,¢) as € = 0 in
ClAR) is z4().

Now multiply (3.24) by Z,(t) and integrate over the interval (~1/4€,}/4¢€]
by parts to obtain
Ke
X (€) I E@(t,e)z'o(t)dt

. - . ‘=K€
- [Zo(t)a(t’e) - Zo(f)a(t)] v=-Ke

Ke
+ I [z, + [ (Z(t,€),et)i }B(t,€)dt

Ke
in which fJ(t,e) = Z(t,e) for |t| € Ke, is used.
Substituting z, = -f (z(t), 0)2,(t), one obtains

Ke
X (€) I Z,(t)P(t,e)dt
Ke

Ke
= O(e'B /€y + I [f(Z(t,€),€t) - £ (2,(1),0))2,()B(t,€)dt.
€

The first term on the right side is obtained from the decay estimates in

Theorem 3.i (ii) and in (2.7). By the Lebesgue’s dominated convergence theorem
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2,(t)%dt

[u 2,(6) (:)] I
€

= I [fu(Zo(0.002,(1) + £ (z,(1),0)t]z(t)*dt.

The last term is simplified by integration by parts:

o @

I £,u(Zo(1).0)z ()2 (t)2dt + I £, (Zo(D,0)t7 (1) 2dt

- I f.(2o(0),0)[z,()Z(t) + Z,(t)Z (t)]dt

i I-ofx(zo(t),O)io(t)dt . J‘Qfx(zo(t),O)t'z'o(t)dt
= - I:fx(zo(t),O)z'o(t)dt
. I:[fu(zo(t),O)zl(t) + £ (z4(1),00t)Z(t)dt
+ r.,.z.‘(t)f(%(t)’o)dt

LA

- 1'0).

This completes the proof of Lemma 3.4.

g Ba8°Y 10 Vb gl Aol tof Yad Fob 8 R

1
- I f (u,0)du + I [Z,(t) + £ (2,002, + £ (z,(1),0)t](z,(1),0)dt
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4. The method of Liapunov-Schmidt.
L. In this section, we use the method of Liapunov-Schmidt to obtain the
existence of equilibrium solutions of (2.13); the solutions of
' (4.1) £€u + G(e¢) + F(ue) = 0
, with G(e), F(u,e) defined in (2.15), (2.16).
Let E: Y - Y be a continuous projection onto the span of ¢,(-,¢), the
principal eigenfunction of 2€¢ normalized so that $,(0,¢) = 2,(0). E is given
explicitly by:

3 (42) Eu = <u,,(-,€)>8,(-,€)/[|,(-,6)] ®
L3(-1,1)

in which < u,$,(-,€)> = Iflu(x)¢1(x,e)dx. Let Y, and X, be the null spaces
of E in Y and X, respectively. Associated with the projection E, one has

the following decompositions

“ (4.3) Y = [¢(e)) @ Y,, X = [$,(c)] & X,.

R One should notice that Y, = R(2f) = 2¢X, and that £ : X =Y, is a
[y

one-to-one mapping. In accordance with the decompositions in (4.3), the problem
)

(4.1) is recast as
b (i) £¢v + (I-E)G(e) + (I-E)F(ad,(€) + v,e) = 0

(4.4)
(i) X (€)ad,(e) + EG(e) + EF(ad,(€) + v,e) = 0

where u was replaced by u = af,(x;¢) + v, with « € R v € X,.

»
L
f Lemma 4.1. There exists an €, > 0 such that, for € € (0,e)] and p € Y,,
the equation 2€v = p has a unique solution v = v(p) € X, Moreover, there
4
exists a constant k > 0 such that
¥
(4.5) |V(p)|z,e £ k|p|0, for ¢ € (0,e), P €Y,
I
[}
!
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Proof. Take an €, > 0 so that Theorem 3.1 is valid for ¢ € (0,65  The
first part is a consequence of the fact that 2€ : X, = Y, is bijective. As for
the estimate (4.5), Theorem 3.1 (iii) implies that "(2‘)'1"}30(1 ¥ ¢ ! since
£€ is self-adjoint; hence, |[v(P)[o € |P|o/#e  Then, the equation 2€v = p
implies that e’|v(p)"|0 £ Co|p|0 for some positive constant C, which is
independent of € € (0,e;,1. Now, from the interpolation inequality
|v'|o < e[v"|° + 2e'1|v|0 for any € > 0,
one obtains the existence of a constant k > 0 for which the estimate (4.5) is

true. This completes the proof of the lemma.

Lemma 4.2. The equation (4,4) (i) is uniquely solved in v as a function v =
v¥(e) of (we) € R x R, in a neighborhood of (x€) = (0,0), smooth in «

and |v¥(a€)|, ¢ = (< + €2 as |@] + € = 0.

Proof. The lemma is proved by a standard application of the contraction
maping principle.
Let F:Y, x Rx (0,6;] =Y, be defined by

F(vie) = KS(I-E)G(e) + F(ad,(€) + v,€)]

in which K¢ = - [!."lYl]'l and €, is sufficiently small to permit the

application of Lemma 4.1 and Theorem 3.1. From Lemmas 2.1 and 4.1, we have
|(-E)G(e) | = O(e?) as ¢ = 0.

From Lemma 4.1 and the definition of F(u,¢) in (2.16), we also have
|(I-E)F(a®,(€) + v,€)|, = O(|a| + |v]p)?

as a,'v,o = 0. Therefore, there are positive constants Cpkg such that, for

0 <€ € ¢, |v|0<co, 'al € ¢cg

S \m e T ame g " A e T N S e . S P " T R e e e ) - . T I ) w "
S N A N NN NN L T e e et W R T N



M WU U U TFURFLEN

PR N S

A e )

&

)

o AT A
R S o L

R T SR S TR IR R R A A I A T Ty R 42 8 4'a d'e. 08828 b 2 b" UWU Yo @t Vo At DWW UN "L} iy

=27~
(4.6) [F(Vax€)|5¢ € kgle? + (Ja| + |v]o)*)
€
and for |v1|0, |v2|0 Co»
4.7) |T(v1,a,e) - 3"(v2,c:t,e)|z,e £ k‘s(lvll0 + |V2|0)|vl - Valo

If Y(r) ={v ey, |v|0 € r} for r > 0, then, replacing ¢, €, by
smaller values, if necessary, one can find r > 0 so small that the following
inequalities are satisfied
(4.8) kele2 + (¢, + 1)?) < r and 2kgr < L.

For such a choice of r as above, and « € [-cpCp), € € (0,65] the mapping
F(-,a€) @ Y, (r) = Y, (r)

is a contraction mapping. Hence, the existence of the function® v*(xe),

« € [-c;,Co), € € (0,65, is ensured. The order estimate on |v*(a,e)|2,€, as

|<x| + € = 0 1is obtained from (4.6). The proof is complete.

We are now in a position to state an existence theorem for equilibrium

solutins of (1.1), (1.2) with a single transition layer.

Theorem 4.3. If (A-1) - (A-2) and (A-3) are satisfied, then there is a family of

equilibrium solutions u+(x,e) of (1.1), (1.2) with the following properties.

(i) lim u+(x,e) = {0 compact uniformly on [-1,0)
€0
1

compact uniformly on (0,1]

and
|u+(‘,€) - U('ge)lz'e d O(e) as € - 0

(i) I/ 2% : X = Y is defined by ¥v = €' + (0 (x,€)X)v, then the
principal eigenvalue X3(e) of 2§ satisfies
’(e) = Kie + o(¢) as € =0

and there exists a positive constant W, such that
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23(e) € -uy for ¢ € (0,¢)
where K, is the constant defined in Lemma 3.4 and x;(e) is the second
eigenvalue of %§.
(iii) There exists a positive constant d, independent of € € (0,e,] such that

u,(x,€) is monotone increasing over the interval [-ed,ed;].

Proof. Finding such a family of equilibrium solutons of (l1.1), (1.2) is
equivalent to finding a family of solutions (of€¢),v(¢)) of the problem (4.1).
By Lemma 4.2, the later one is reduced to solving:

B(e,e) = 0
where B(oge)¢l(e) = )‘1(‘)“4’1(‘) + E[G(¢) + F(ap,(e) + v*(xe€),€)]. From Lemmas
3.4, 4.2, it follows that
(4.9) B(xe) = Toe? + o(e?) + (K€ + o(e))a + o(l)e? + O(a)
in which 7, is given by:

o

(4.10) T, = I 2O, (Zg(D.0)2,(1)? + [ (25(1),0)tz,(1)

+ 3 1 (20,0021t |2,
Lz('lil)

and o(e?)/e? -0 as € - 0, 0(1) ~0 as € - 0. By applying the implicit
function theorem to:
(}/e})B(eq,e) = 0
onc can show that there is a unique solution (o*(e),e) of
|| < ¢ € € (0,€,], which satisfies
4.11) o*(e) = (-T/K,)e + o(¢) as € = 0.
Therefore, (o®*(e),v*(a®*(e),€),¢) is a unique solution of (4.4)

€ € (0,60].

DR I R Y Sy v .~y " » T P R *, ¢, € P A T T AT T AT T
4 e "y ” ,NJ'N’ '-¢‘ ".F'J-/'ff‘f-" -F.-f -f‘-' H".\.N-.f\,_ (y \‘ A 'V\. TN N

- s 4% (e 2 )



-

P

~29-

Sy »

- e -

Now, our desired solution u_(x,e) is given by
(4.12) u, (x,e) = U(x,€) + o*(e)d,{x,€) + v*(a*(e),€).
Since it follows that |¢1("‘)|z,e € k,|z'0(0)|, |ar‘(e)| = (O(e), and
|v‘(a‘(e),e)|2'€ = O(e?) from Theorem 3.1, Lemma 4.2, and the estimate given
{ above, one obtains

i

(4.13) [uyC-€) - U(-,e)|2.e = O(e)
which, along with the construction of U(-,¢), proves part (i).
In order to prove part (ii), one just follows the same procedure as in the
proof of Lemma 3.4 to obtain
w w

[16'310 x;(e)/e” 2,(t)%dt = J [, (Zo(D0)Z, (1) + £ (2,(1),00t)2,(t)*dt

in which Zl(t) - (-To/Kl)z'o(t) + z,(t). The subsequenct computations in the

proof of Lemma 3.4 is valid as well in the present situation, since Z, satisfies

1

W X

the non-homogeneous linear equation

Z, + £,(z(0.00Z, + £, (z,(1),0)t = 0.
Therefore, one can conclude:
lei_r.n0 M(e)/e = K,
As for the existence of such a constant u, > 0 as to satisfy: \}(e) € -u; for
€ € (0,¢,], one can follow the arguments which led us to Theorem 3.1 (iii).
This completes the proof of part (ii).
To prove part (iii), let us notice that, for |x| < 1/4
€ul(x,e) = i (x/e) + €i,(x/¢€) + oa*(e)ed!(x,¢)
+ e(dv*(e®(e),e)(x)/dx).
Since |d‘(c)¢l(-,¢) + v‘(c::"(e),e)h’e = O(¢), and Zyt) > 0 for t € R, one can

choose d, > 0 so that

}:{L\-\,:.__\ '-'r-.f: > e e A L PO A R T G R NN NN L SRRy q. " A
. .n"t_'\, .!gi‘& jmm& n : . )



-

ER

P
Pt "

',‘.‘h-"‘h Rad

REPL L

L K

.

el sy

S W% RS

I R

N
N
A
e

',

n

s

I/!.«‘{J‘f-ff-l.r"l‘ J'-,-IJ-I'J'

CoaE o5 atd at. aidh 2% afE %8 2Ti at8 a¥h avE a¥Y 2%F 2'& aVh %23 als SRV 98 00 R 0" at a0 8a 0% 4. 02 B2t Bt .0 5% i b

-30~-

inf (2(t); [t] € dg) > |€2,(:) + €a*()®](-,€) + ev¥(a*(e)e) |
for € € (0,¢,] (by reducing € > 0, if necessary). For this choice of d.

uj(x,e) > 0 for |x| ¢ ed,, € € (0,¢5) This completes the proof of Theorem

4.3.

Remark 44. We could construct another family of equilibrium solutions of
(1.1), (1.2) with a single transition layer, which, however, "jumps down" from 1

to 0 as x passes zero from left to right. We state this as

Corollary 4.5. If (A-1), (A-2) and (A-3) are satisfsied, then there is a family of
equilibrium solutions u (x.,¢), for ¢ € (0,e,], of (l.1), (1.2) with the following
properties.
(1) lei_.ngu_(x,e) = (1] compact uniformly on [-1,0)
{0 compact uniformly on (0,1]
and
[u(-.€) - U_(-,e)|2'€ = O(¢) as € =0
(i) If 2§ : X = Y is defined by ¥v = €' + [ (u(x,€),X)v, then the
first eigenvalue )\%(e) of 2§ satisfies
M(e) = -K,e + 0(¢) as € =0
and there exists a positive constant y, such that
2(e) € -uy for « € (0,¢,)
where )3(e) is the the second eigenvalue of 4.
(iii) There exists a positive constant d, independent of € € (0,e5] such that

u_(x,€) is monotone decreasing over the interval [-€d,ed;).
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Proof. First of all, we have to construct our approximate solution U_(x,e).

DR/

S This is achieved exactly in the same way as was done for U(x,e), except for

-~
-

the following two steps:

-
- -

1) z, a solution of (2.3), is chosen such that

z,(-®) = 1, z(+=) = 0

3\ .
N 2) Ux,e) = {(x)Z(x/¢€,€5 + § (x)
! in which { (x) 1is a smooth cut-off function define by:
§.(x) ={ 0 , x €]0,0]
v 1-{4(x), x € [-1,0]
< The remainder of the proof of Corollary 4.5 is identical to that of Theorem
. 4.3,
Remark 4.6. Theorem 4.3, Corollary 4.5 give not only the existence of
equilibrium solutions of (1.1), (1.2), but also their stability properties.
N
A
Theorem 4.7. The equilibrium solutions wu,(-,¢) are asymptotically stable for
J € > 0 small if
: (4.14) ul(0,6)1'(0) > 0
? and unstable if
A (4.15) ul(0,6)J'(0) < 0.
H
\
e

Remark 4.7. In the statement of Theorem 4.3 (i), we could slightly improve
the modulus of approximation |u+(-,e) - U+(-.e)|2'e by choosing  z,(t)
carefully. When z (t) is chosen so as to satisfy the condition (2.8), the problem

(2.4), (2.6) has a onc-parameter family of solutions z,(t) = cZ(t) + zj(t), where

e a e ath s aneap - n " .e
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z:(t) is a wunique solution of the problem (2.4), (2.6) normalized so that
z}‘(O) = 0, z':(O) = 0 hold. We shall show that, by choosing appropriately the '
\
coefficent ¢ of Zy(t) in the expression of 2z,(t), the number 7T, in (4.10) '(:
..l
can be made equal to zero. This, in turn, implies that |u+(-,e) - U("‘)Iz,e = \
o(e), in view of the proof of Theorem 4.3. Now, ||z'0||{2 T, is written as !
;
lZoll?2 To = *1y/2 + Lic + 1, ]
L
in which )
v
t
C 3 e
I, = I f,.(zZo(1),0)2,(t)*dt g
I, = I [f Lu(Z2o(0:0)2o()223(1) + [ (z4(1),0)0t2,()?]dt "
- 3
and [, is a constant which does not depend on c. Integrating by parts, one :
easily obtains o
1 1 g
I, = Ifuu(u,O)(-2F(u))du = -2 Ifu(u,O)f(u,O)du =0 .
0 0 -X
and -3
I, = J f(zo(1),0)[Z3(t) + f (z4(1),00z}(t) + f (z,(1),0)t]dt
- 10 ~
=-1'0) # 0. 2
Therefore, by setting ¢ = IO/J'(O), one can make T, = 0. q
o,
’I
g
LY
~
-
'
2
(B¢
t
wy
9
]
®
¢
!
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5. Secveral transition layers
In this section, we extend our previous results to the cases in which several
transition layers can occur. We consider the problem (1.1), (1.2) under the

assumptions (A-1), (A-2), and (A-3)’:

"

' (A-3)'. I Jx) = L‘,f(u,x)du, x € [-1,1]) as before, then there exist n points
k x; € (L1, x; < x4, i = 0l,---,n with x5 = -l, X1 = L such that the
' following conditions are satisfied:

(1) J(x) =0 i=1,...n

: (ii) dJ(x)/dx|x=xi #0,i=1,---n

! (iii) I:f(s,xi)ds <0 for ue@l)i=1...n

|

We intend to construct a family of equilibrium solutions of (1.1), (1.2)
which exhibits transition layer phenomena at the points x = x, i = I1,---,n,
Let us begin with constructing approximate solutions. In virtue of the

results in §2, one can find the solutions of the following equations.

; (5.1) Zoe + 0(254x) = 0
' (5.2) T + 0,20 X)) + [(25 )t = 0

with the boundary conditions

limzh ,((-1)0) = 0, limz (-1}*}0) = 1

. (:3) D .
limzo ((-D'0) = 0,limzg ((-1)'t) = 1
(5.4) 2y, arc bounded on R

for each i € {1,---,n). At this stage, zilt is not uniquely determined. We

impose the additional condition

) PO RS TN T PR T R A RS T VR Y, ) PR e N 55l Yo WU TP V. PR N o T S N L I I T R VT S AR
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(]

(5.5) [ 2 D o (2h (DX )2, L) + T (zh (0).x)1Z) 4(1)

+ 3 £ J(0),x)de = 0

which determines zil.t uniquely for i = 1,....n. The significance of the
condtion (5.5) is clarified in Remark 4.7. When (5.5) is satisfied, the order of
the approximate solution is improved. However, even if (5.5) is not satisfied,
the stability analysis below is unchanged.

Let d, and X, i=20,---,n be defined by

i?

2d, = min{x,

i1 " xili = 0,.--,n})

X; = Mx; 4, +x)i=0]l,-.n

We also let  Zi(t,e) be defined by
(5.6) Zi(t,€) = zg.t(t) + eziu(t), i=1,...n.
By using the notations defined above and the smooth cutoff functions {,¢,,

and {_, our approximations Un't(x,e) are defined by:

, =0 (=1 for U, ) for x € [-1X]
= Lo((x-x)/dg)Z((x-x;)/ €,€) for x € [X,X;,)
+ Lyl(x)/dp) I 1.,[%]
(5.7) U, s(x,€)§ = §o((x-x,)/dg)ZL((x-x,)/ € ,€) for x € [X,X,,,]
+ L((x-x)/dg) i=2j =12
=0 (1 for U, ) for x € [X,, 1] if n is even
=1 (0 for U, ) for x € [X,,,.1] if n is odd

The functions U, 4(x,€) will be our approximation to equilibrium solutions

-
"




-35-

of (i.1), (1.2). Changing variables in (l1.1) by: u — u + U , the new
function u is subject to the equation
(5.8) Bu/g = 2€ME y 4+ GO(e) + FO(u,e)

and the boundary conditions in (1.2), where

(5.9) TERE = et + (U, 4(x,6),x)u

(5.10) GUeNX) = €2U) ,(x,€) + (U, 4(x,€),x)

(5.11) Fi(u,e)(x) = f(Un't(x,e) + u,x) - f(Un’t(x,e),x)
- fu(Un’t(x,e),x)u

Since the main line of argument in the sequel is irrelevant to whether we
choose Un'+ or Un'__ as our approximation, we simply denote Un,t’ gént
G} and F} by U, 2% G™ and F"™ respectively. However, the stability
property of the equilibirum solutions of (1.1), (1.2) depends on the choice
between U

n+ and U, (see Lemma 5.2, Theorem 5.4).

We first examine some spectral properties of the linear operator £¢7

Lemma 5.1.

(i) The first n eigenvalues of 2", X\ (€) > X\(€) >---> ) (€), approach
zero as € tends to 0.

(ii) Let ¢>J.(x,e)‘ j = 1,---,n be an eigenfunction of £¢" coresponding lo
xj(e), then one has:

O,(x; +et,€)/0; (x; ,€) — zy (1)/25 40) as ¢ =0

in C!_ .(R), for ij=l,---n.

(iii) There exists a positive constant kg, such that

|$i(x;+et,e)] € k0|¢j(xi,€)|c'25'“ for |t| € dy/e
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(iv) The remaining eigenvalues of £¢™ are bounded away from zero; namely,

there exists a positive constant p, > O such that

an(e) € -py for € € (0,¢,)

Proof. The proof is an obvious modificaiton of that of Theorem 3.1.
(i) Let 6.(x,e,)) be the solutions of (3.4-b),, in which U is replaced by

U_, with initial data ©(-l,¢,\) = 0, for ) € [-B%/2,B%/2]. It is

n
sufficent to show that, for any X € (0,8%/2), there exists €,(2) >0 {
such that A
(5.12) 8 (l,e,)) < 0, 0.(1,6,-)) > (n-I)n

for e € (0,6(\)].  We shall prove (5.12) for the case of n = 2. For
the case in which n 3 3, (5.12) follows from repreated application of
the arguments below. If 8,(x,6,)) is the solution of (3.4-b), with
initial data eo(iz,e,x) = 0, then, the proof of Theorem 3.1 (i) implies
that 8 (X,,6,)) < 8y(X,e,)) = 0 for ¢ € (0,6,(V)). If 8,(x,€,)) s
the solution of (3.4-b), with 9+(l,e,x) = 0, then, applying the proof
of Theorem 3.1 (i) to 6, and 9+, one obtains: l

8,(1,6,0) < 0_(l,e)) = 0 for e € (0,E,(2)).
Therefore, for € € (0,64())], with ¢ (}) = min {€;()), T,()))}, s

8.(1,6,)) < 8g(1,e,) < 8_(1,e,)) = 0.

On the other hand, if 6y(x,e,-)) is the solution of (3.4-b) y with

- - - -

eo(i,,e,-x) = "/2, then it follows from Theorem 3.1 that n/z = Bo(iz,e,-X)

< 8(x,¢€-2) < 1 for ¢ € (0,6,()) Denoting by 8,(x,e,-)) the

solution of (3.4-b)_, with 8 _(l,e,-)) = m, and applying the arguments of

Theorem 3.1 (i), it follows that 8y(1,€,-)) > 9+(l,e,-x) =7, for € € \

A A LN A I A A ATt L e e T v B T e R e R T e e e e a3 T S e e W TN TAO NN T,
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(0,,())]. Therefore, for ¢ € (0,e,())], one obtains
0 (1,e,-}) > 8,(l,e,-)) > 1

where  €,()) = min (€ (3), ¥, (). This completes the proof of part (i)

In view~ of part (i), part (ii) follows from the proof of Lemma 3.4, and part
(iii) follows from the same type of arguments as the proof of Theorem 3.1 (ii).
The proof of part (iv) is essentially the same as that of Theorem 3.1 (iii).
In fact, if one defines 0,(x,6,)) for x € (:‘g[xi + €tyx; c€tg]) U [-1,x-et)] U
[x +et,,1]  by:
[f (U%(x,€),x) - \] cos’®, + sine, = 0
- M2 < o (x,6,)) € - @,
e, ¢ e+(x,e,x) < "/z
for |X| ¢ B%3, 0 < ¢ €,
in which, to Eo are chosen in such a way that the condition (3.7) is satisfied.
In order for the value X (€) - u to be the (n+1)*" cigenvalue of 2€7 it is
necessary that there exists at least one index j € (l,-.-,n} for which
ind 9_(xj + €ty,€,h (€) - u) > e*_(x‘i + €tye,) (€) - p) - kge + .
9_(:(‘i - €ty,€,) (€) - p) < e_(xj - €ty € (€) - p) + 2kse
hold. Now, following the arguments in the proof of Theorem 3.1 (iii), one can
find a positive constant u{, such that
Mapr(€) € i) for € € (0,¢,).
If we define u, = min{u): j = 1,---,n), then it follows that Mosr(€) € -uy for
€ € (0,¢,]. This completes the proof of Lemma 5.1.

In the next lemma, the asymptotic estimates on xj(e),j-l,- --,n are refined.

Let us define f(f by:
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- 1 ®
(5.13), K} = (-1 J‘fx(u,xi)du/] [Z5(D)%dt, i = 1,--,n
0 -0
and
~ 1 °
(5.13)_ K; = (-1)i*1 I fx(u,xi)du/J [(zit)1dt, i = 1,--.,n.
0 -

Lemma 52. Let (K{)'_, be a rearrangement of the sequence {if}{;l in such

a way as:
+ % +
Ky 2 Ky 3.-.3 K.
Then, the first n eigenvalues Xj*(e), j=1,---n, of EE™E sarisfy

(5.14), xj*(e) - eKj* +0(e) as € =~ 0

In order to prove this result, we need another lemma. Let $j(e),j=l,~--,n
be the first n eigenfunctions of the linear operator 2™ normalized so that
(5.15) <$i(e),$j(e)> = B ij=1,-...n.
where <u,v> = Iflu(x)v(x)dx is the wusual scalar product. Because of the
normalization (5.15), \/r|$j(-,e)|o, j=1,-..,n, are bounded; hence, by reasoning
as before, Lemma 5.1 (ii) implies:

(5.16) vE Bi(x; + ete) = azig, () in CI(R) as € =0

for ji=1,...,n, where aj, i,j=1,---,n, are some real constants.

Lemma 53. If A : = (aij)i"ki=l IS the n x n-matrix with its entries a;;
defined in (5.16), then it follows that:
det 4 # 0

and, in particular, A is invertible.

Proof. In virtue of (5.16) and Lemma 5.1 (iii),

P i % ) A s, R N
A\ 0. (%, .“:’. [ b

\1‘v

(AN

Ap gl 4%




4&."4“"' FANRE KB X RATKY '¢ a0k AN N SN TI W VOU AR AR N ANKURUN RN NALY UN UY VWU 19" 11,28 "ol KO EININ ERINE N UN TR

]

3

o -39~

Y

f n px,+dg B8
<Be)Fe)> = L (x.0F(x,e)dx + O(c™P/€)

TN k=1 “x,-dg

i v

i

W n 0/€ Be

K> = T ¢ d(x, + et,e)aj(xk + et,e)dt + O(e/©)

% k=1 -do/E

:; - n 0/€ 8

R = I Ve §(x, + et )[ved(x, + et,e)ldt + O(e™/€)

& k=17-dg /€

!

0:_ n Ao n

| < o] EhOPd- T G

é. k=1 -® k=1

! ‘ as € -0 for i,j=1,---,n. In view of the normalization (5.15), one obtains:

k)

0

‘Q‘ n - .

. (5'17) Z aikajk = sij l,ng,‘ LRI ¢}

| k=

) -~

E where q, = 3ik||il(§,t||- The relations in (5.17) mean that the matrix A4 = (ﬁ'ij)

e is an orthogonal matrix, and hence det 4 = 1. From this, it follows that

n n
_ ~ k-1 o skq-1
det 4 = (det 4) l‘Elllzo" k;‘, l[2o]”" # O

hS ~I 'ﬂli‘-.:.l'l

Proof of Lemma 5.2. Consider the eigenvalue problem

2 (5.18) 267y = .

, The method of Liapunov-Schmidt will be used in order to obtain a system of
1

) n equations which the first n eigenvalues xj(e), j = 1,---,n, should satisfy.
"
2 This system of n equations then will be "diagonalized" by using the matrix
" ' A which is defined above.

l
yis

v ) If we let Y(x,€) = e‘”;0((x-xi)/do)z'},.*((x-xi)/e) i=1,---,n, then Supp Y(€) N
Al
j Supp d)j(e) is empty for i # j, and therefore, (¢,(¢),---,¥ (¢)} spans an n-
N

;. dimensional subspace in X (and hence in Y). We define a continuous
R
o

‘

LA

U
Al

,

-‘)
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!
¥ projection E_ onto [§,(e€),---,§,(e)] by
X n
N (5.19) Eu = L <f (¢),u>P(¢e) for u €Y.
P k=1
) The spaces X and Y are decomposed in accordance with E;:
) X = [§y(e),- - - (e)1€X
' (5.20)
| Y = [(B,(e),- - -, B (e)IOY,
| in which X, and Y Z are the null spaces of E , in X and Y,
)
K respectively. These spaces are also decomposed as:
D)
N)

X = [d’l(e)" : 'an(e)lexn

(5.21) for € € (0,¢,).

Y = [ye),- - - (e)]0Y,
»
§
) This is easily seen by observing that:
3 [l/"z'-(i)"’] < §e), ¥e)> ~a; as €~ 0 for ij=l,---)n
: and 4 = (aij) is invertible. Let fn be the projection onto [¢,(€),- - -, (€)]
¥ along the subspace Y, which is defined by:
f - n
f (5.22) Eu = I c(ule) for uey
b k=1
¥ in which ¢, (u) is determined by:

n
(523) b3 <$i(€), wk(€)> Ck(u) - <ai(5),u>' igl’- -n .
k=1
n

: If welet u ==Yy, + v with a=(a,  -,«) €R and v € X, then, in
{ =1
\ terms of decompositions in (5.21), the equation (5.18) is equivalent to:
[}
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a) A(eNa =0
(5.24) n
b) lte.nlxn - xlxn]v skflaka(e,x)
in which A(e,)) is the nxn-matrix given by:

A(e)); = ¢ e) ~ My(e)), ij=1,---,n
and Q.(e,))’s are given by:

Qe = (I - ENEZEMN(€) - My(e)).
We can assume that |Xj(e)| < /2 for € € (0,64], j=1,---,n where p, and
€, are the constants which appeared in Lemma 5.1. Then, [t""|xn-x1xn] is
invertible uniformly with respect to ¢ € (0,eq] and N € [-uy/2, u,/2], and
therefore, (5.24) implies that the first eigenvalues )«j(e), j=1,---,n of ¥&" are
the roots of the equation:
(5.25) det A(e,a) = 0.
Let us now compute the matrix A(e¢,)) explicitly. By definition, A(e,x)!.j =
ci(ri»"wj(e) - wj(e)) and hence we shall compute both sides of (5.23) with u
replaced by t‘-"cbj(e)- My(e), j=1,--.,n. In order to avoid complicated

notation, we simply write zi etc, instead of 1z}, etc.

1
(5.26) BN G = J BxOLEEmY,(x,€) - M(x,€)ldx
-1
xj+d0
= I B X, O[EE MY (x,€) - My(x,€))dx
xj-do
o/4€ , .
= vE 3i(x‘i + ete) z(t) + fu(Z’(t,e),x‘i + €t)i(t) - xZJ(t)]dt
-d0/4€
+ O(e-Bra¢)
> '-"‘ w- \.‘\' "b" NSRS o "‘\"":" ."'- Sy ""--"\‘.’-:'"';'.;"x" e e TR e e Y
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(5.27) I <$,9> ck(fe'"d;j - )
k=1

n 0/46
=Y { ve §(x, + et,e)z':(t)dt + O(c'B/“)]ck(t"“wj-ij)
k=1 -d0/4€

n n
= L (3, + o(1))c,(X5™(e) - Mh(e)) = L (a5 + o(1)A(€,)),;.
k=1 k=1

One should notice that the last term in (5.26) is written as:

a€
e{é o vEB(x; + €L e)lf (ZXte)x; + €t) - [ (z(t),x)-A]zk(1)dt
-d0/4€

+ O(c'B/”)}

= eaij{ I [f o (ZADX )z + £, (230X )tz 1) dt

- }I [zi(01%dt + o(l)].

Equating this expression to the last term in (5.27) and using the fact that A4 =

(aij) is invertible, one obtains:

(5.28) 1A(e,)) = diag (9,(€,)),---,9,(€,2) + o(]) as € =0
in which
(5.29) d,(e,)) = I [fuu(zg,'t(t),xj)xj)z{.t(t) + fu,(zé,,,(t),x,-)tllz‘%,,t(t)]’dt

- /0 b ontar
! -
- 0" s - Mo 1 yorar
0 _®

and * =j-1 if *="+" j* = j if * = "" This formula is a consequence

of the computations in the proof of Lemma 3.4. Since the first n eignevalues

xj‘(e), j = 1,---,n, are characterized by: det A(e,2*(€)) = 0, (5.28) (5.29) imply
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that there is a one-to-one mapping

p: (]’...’n) - (1’...,n}

such that:

1
lei_r% xj’(e)/e = (-l)P(J)‘+1jofx(u,xp(j))du/I [zP(J) Jdt.

From the definition of i* and (5.13), it follows that
Li% \le)e = K » i=1---n

| In view of the fact, xf(e) > xf(e) > > ):(e), this implies:
1 t t 1 = . v .
len_r_lz)kj(e)/e =Kj;, j=1.---n

completing the proof of Lemma 5.2.
Before stating the main result of this section, we define two subsets 0

and 0, of [-1,1] by:

a,

[-1,x)) U (xr"s)U‘ --Ux_,1] if n is even

= [-1x )V - Ux, %) if n is odd
0, = (X, XV - -Ux (X ) if n 1is even
= (XpXU- - -UX, px Ax 1] if n is odd

Theorem 5.4. Suppose the conditions (A-1), (A-2), and (A-3)' are satisfied. Then
there exist a constant €, > 0 and two families of equilibrium solutions u, 4(x,€)
of (1.1), (1.2) for € € (0,e5] with the following properties:

0 on

(i) limu +(x,e) - compact uniformly
‘% " I on N

€ . " PILIPL EPIC R G ‘ 1‘1_1_.f.. - !.‘q...‘-c - g _--.-- \.q‘- L) LR L
N ) \), .)_x )_u L™ ‘.- AR A .,.'_-.4, NN -'. n _,;x.:._ " -. - _*..\J,\',,-._\‘.\}'\.
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1 on 0
li_r’xb u, (x,e) = compact uniformly
€ ’ 0 on Q

and Iun,t(-,e) - Un,t("‘)lz,e = o(e) as € = 0.

i (ii) Iy 2™ X ~Y are defined by:
: PEMEy = (2yn £ (u, £(X,€)x)v

then, the first eigenvalues xj(e,n,:t), j=1,---,n, of 2EME sarisfy:
xj(e,n,t) = Kj*E + o(€¢) as € -0
and there exists a positive constant  j,, independent of ¢ € (0,¢)] such that:

3 Xn..',l(eonst) ‘ 'u-o for € € (0,50].

. (iii) There exists a constant d, 0 < d; € d, such that the functions

u, ;(x,€) are monotonic over the intervals [xj - €d,, X; + €d,), j = 1,---,n. More
L}

precisely:
+ (-1)tly 'n,t(x,e) >0 for x € [x; - edpx; + ed]
- j = 1121' -+,
¢
4
{
v Proof: The proof is essentially the same as that of Theorem 4.3, We define
Y,
' d>j(x,e) by: ¢j(x,e) = VE 3j(x,e), j=1,---,n where 5,’ are the j-th eigen-
: functions of 2¢" j = 1,-...n, normalized in such a way as in (5.15). According
;' to the decompositions in (5.20), the equilibrium solutions of (5.8) and (1.2) must
' satisfy:
N a) z‘mv + (- E)GYe) + U -E )F“( }: a¢j(e) + v,E) =
; (5.30)
) b) ):ax(e)o(e) + E,G"¢) + E 1-'"(‘):1 b, (€) + v,€) =

J:

D)
9

""v"‘.- ‘f".r‘- P e :\r‘r'f PRGN AT A
W > - h
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1'. n
Lo in which u is replaced by [ aj¢j(e) + Vv, o € R v € X, The equation
o™
::: (5.30-a) is uniquely solved in v as a function v = v*ae) of («e) in a
o
N
‘;: neighborhood of (x€) = (0,0) € R* x R,. v*«e) is continuous in («e€) and
)
. is as smooth in « as f(u,x) is in u. Moreover,
w
) 2 2
: |v‘(ege)|2,e = O(e® + |a|) as e, |u| - 0.
N

Substituting v= v*(e,e) in (5.30-b), one obtains the bifurcation equations:
-
- (5.31) B(xe€) = 0,
K% where  B(oe) = (By(ae),- - -,B (x€)) is defined by

= i

& Bj(cx,e) = ajxj(e) + € <G“(e),¢j(e)>
“u n
: + & <FY( Z, %) + v¥(ae)e),0,(e)>
¥ for j=1,---,n
- We shall show the solvability of (5.31) by computing first few coefficients
1 } n
: of the Taylor expansion of B(ae) in o« If we let Bj(cr,e) = B§°)(e) + Zl
X i=

n
Bj(il)(e)a. + LE_J Bgﬂ(e)cxicx1K + O(|a|3) then, employing Lemma 5.1 - (ii), we can

¥

casily obtain:

b

5 BiAe) = & <GM(e)g(e)> + § <FA(V(-, ©),0)0((¢)>
< = £ <G™(e).0(e)> + O(e)

A n

) - e’l}_:laj,‘r,+ o(e?) = o(e?)

v =

»

i -

; where Ty = J [‘2L f‘uu(zg(t),x,)zf(t)2 + fux(zg(t), x,)tzf ()
* + 1 dnxpzinde

[,

- = 0 (by virtue of (5.5))

LS

. and a;y are the constants defined in (5.16). The same type of computation
‘

[
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shows
Bfll)(e) = th (E) + O(E) = Kfe + 0(6), _] = l,.. -,n
B()(e) = O(e?) i #

n
B}izk)(e) = 4211)51 aj,ai,ak,I“fuu(zg(t),x,)[z‘g(t)]"’dt + o(l)

o(l) ik =1,..-n
in which o(e)/e, o(l) = 0 as € - 0. Therefore, the bifurcation equations

(5.31) read as the following:

o(e?) + e[K-‘._O ][ a‘] + N(O)a + o(1)O(|e|?) + O(j«|% = 0
0 K, o

in which N(e¢) is a certain n x n matrix with zero diagonal entries and

[NGe)| = O(e?). Now, applying the implicit function theorem to 22B(wxe,) = 0,

one obtains the solution of (5.31), o = ot;'(e), with ot;(e) = o(e), j = 1,---,n.

The desired families of equilirium solutions of (1.1), (1.2) are given by:
n
u, 4 (€)= U 4(x,€) +j)=:laj*(e)¢j*(x,e) + v¥(a*(e),¢€).
The rest of the proof is nearly identical to that of Theorem 4.3. This

completes the proof of Theorem 5.4.

Remark 5.5. Theorem 5.4 also implies that the equilibrium solutions “n,t('-‘)
are hyperbolic and that the index of them, lnd(un’t(-,e)) : = dim W“(un.t(-,e)), is

obtained by looking at the signs of Kj*, j=1,---,n. Namely,
(5.2) Ind(u , ,(-,€)) = Card {j|K} > 0)

and from (5.13), it easily follows that:

(5.33) Ind(u, (-.€)) + Indu, (-,€) = n.
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i
&) 6. Generalizations.
:: In this section, we generalize the results in previous sections for the
b following parabolic equation
\
R
. (6.1) Bu 5t = eX(a(x)u')’ + f(ux), x € [-1,1], t 3 O
]
. subjected to the Neumann boundary conditions
~ (6.2) u'-1t) = 0 = u'(L,1),

The functions a and f will satisfy the conditions:
v
N (B-1) a:[-1,]] =R is C"function of x
A\
: f=Rx[-1,]]>R is a C®-function of (u,x)
h
and there exist two functions hy(x) and h(x) of class C® and a
; constant a, > 0 such that

(i) a(x) » a,,

N (i) f(h(x),x) = 0, x € [-1,1], i = 0,1
: (iii) h'(¢1) = 0, i = 0,1
b (B-2) There exists a positive constant B such that
3 f (h(x),x) € -38% x € [-1,]1), i = O,I.
: hl(x)
b (B-3) If we define J(x) = I f(s,x)ds, x € [-1,1] then there exist n points
o Tho(t)
‘ x; € (-1,1), Xj < Xjppd = I,---,n - 1 such that
;‘ (i) Jx) =0, j=1,--n
g .. ' .
f\ (“) J (x)) # 0’ )= l,' s ,N
W u
' . (iii) I f(s,xj)ds < 0 for u in the open interval between
[ hg(xj)
K
“ .
# ho(xj) and h,(xj), ji=1,---,n
.
X
’
)
>
W

[) - . .. - .
) OO Tl w0 ~ ‘ % S N R R A Y AR A T
.t‘:‘!"'l‘\el.\ I’|‘l‘.‘l¢|’;‘&‘l‘n¥”& LS LIRS, :5 0 U LX U M\ l' AL ‘(“\ v
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Under the hypotheses (B-1) ~ (B-3), it is natural to expect that the same
type of results as in Theorem 5.4 will be true for the problem (6.1), (6.2). In

fact, we shall show the following.

Theorem 6.1.  Suppose that the conditions (B-1), (B-2) and (B-3) are satisfied. Then,
there exist a constant €, > 0 and two families of equilibrium solutions of (6.1), (6.2),
u, 4. for which the statements (i), (ii) and (iii) of Theorem 5.4 are valid. with the
statement (i) replaced by

hy(x) on

(i) lim u H(x,€) = compact unijormly
e U h, (x) on Q

hy(x) on
li_r":b un'_(x,e) = compact uniformly .
€ hqo(x) on Q

In order to prove this result, we need the following
Theorem 6.2. Under the assumptions (B-1) and (B-2), there exist a constant

€, > 0 and two families of equilibrium solutions wi(x,e), i = 0,1, of (6.1), (6.2),

defined for ¢ € (0,¢,] such that:

@) |Wi(-,€) - h(-)|, = O(e?) as € =0, i =0,

(ii) wi(-,€), i = 0,1, ¢ € (0,6,] are asymptotically stable solutions of
(6.1), (6.2).

(iii) The families w(-,€), i = 0,1, are unique with respect to the

property : |wi(-,e) - hi(-)l0 -0 as € ~ 0.
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(iv) If we define wyx,0) = h(x), i = 0,1, then the functions
wi(x,€), ew!(x,e) and ezwi"(x,e), i = 0,1, are C2-func1ions of

(x,e) on [-1,1] x [0,€].

Since the proof of this theorem is identical for both 1 = 0 and i = 1,
the subscript i will be suppressed in the sequel.
By the change of variables u = v + h(x) in (6.1), (6.2), the new function

v is subject to the equation

(6.3) 8/t = A(e)v + G(e) + F(v)

where A(e) : X = Y, G(¢) € Y, F(1) : Y =Y are given by

A()u = e2@()v')'+ £ (h(x),x)v
G(e)(x) = e*(a(x)h'(x))".
F(v)}(x) = f(h(x) + v(x),x) - f (h(x),x)v(x).

One should notice that |F(v)|, = O(|v|3) as  |v]o = 0 since f(h(x)x) = 0.

Lemma 6.3. (i) The linear operator Al(e) : X¢ = Y s invertible with the inverse
bounded uniformly with respect to € € (0,6,] for some €, > 0, namely, there

exists a constant ¢ % 0 such that

||A(‘)'llls(v,xe) ¢c, for € € (0,¢,]

(i1) The eigenvalues of A(€) are contained in (-“,-282] for € € (0,¢,).

Proof. Since f (h(x)x) € - 382, the linear analysis in §3 implies the existence
of such a constant ¢ as above. In fact, the equations for the ecigenvalue

problem A(e)v = \v, are given by
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er' = -r[l/a(x). + X} - f (h(x),x)] sin B cos 8

.

\ €8' = [f (h(x),x) - \] cos?8 + sin®6/a(x)

:

l: in terms of the polar coordinates (r,8) defined by v =r cos 6, v' = -r sin 6.
! The equation for the angle © shows that the first eigenvalue of A(e), for €
N € [0,¢,], with ¢, > 0 small enough, lies in (-=, -2B8%, which together with the
N self-adjointness of A(e) gives

N 1A© lpyyy € 1/28%

, The same type of argument as in the proof of Lemma 4.1 completes the proof
)

N

of Lemma 6.3.

L Bk B A U

Proof of Theorem 6.2. The equilibrium solutions of (6.3) are a fixed point of

the operator F(-,¢) = Y -+ Y, which is defined by

« F(v,e) = -A()[G(e) + F(V)].
Since  |G(e)|, = O(e?) as € -0 and |EM)|o = O(|v|3) as  |v], 0,

Lemma 6.3 implies that there exists a constant ¢ > 0 such that

(6.4) |[F(v,€)|g¢ € cle® + |V|3L vV €Y.

|F(v1,e) - F(v2,€)|2,€ ¢ c{|v1|0 + |v2|0)|v1 - Valo

| If we let Y(r) = {v € Y; |v|0 € r), and if we choose €, > 0, r > 0 so small

\ that the inequalities

cle +r] < 1, and cr < %
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hold, then the mapping F(-,¢) : Y(r) = Y(r) 1is a contraction mapping on the
complete metric space Y(r). Therefore, there exists a unique fixed point
u(-,e) of F(-,¢) in Y(r) for each € € (0,¢,]. This proves the existence of
the desired family w(x,e) = h(x) + v(x,e) and its uniqueness (part (iii)). Since
v(-,¢) is a fixed point of F(.,¢), the estimate (6.4) implies [v(-,e)lz’e

c'e? for some c¢' > 0, and in particular, KEDIE c'e?.  Therefore, in view
of the proof of Lemma 6.3, part (ii) follows immediately. Parts (i) and (iv)
will be proved by a kind of bootstrap argument. First of all, one should notice
that the function v(x,e) 1is a smooth function of (x,e) on [-1,1] x (0,¢,).

Now, the equation for v(x,e) 1is given by

e2a(x)v")' + f(h(x) + v,x) = 0.

Differentiating this expression with respect to x, one obtains:

(6.5) A (€)V + p(x,e) = 0

in which p(x,e) = a'(x)e?v"(x,e) + a"(x)e?v'(x,e) + f (h(x) + v(x,e),x)h'(x) +
f(h(x) + v(x,e)x) and V(xe) = X ax and AV = elax)v')' +
fu(w(x,e),x)V. Since Lemma 6.3 also applies to ;(e). for € € (( 1 by

reducing €, > 0 if necessary, (6.5) implies
(6.6) |V|2’e £ c|p(-,e)|o.

Since |v(-,e)|2.e = O(e?), and fu(h(x),x)h'(x) + f (h(x),x) = 0 imply |p(~,e)|2.e
¢ ce? it follows from (6.6) that |v'(-,e)|2'e ¢ ce®. Differentiating (6.5) again

with respect to x, onc obtains:

(6.7) A ()W + q(x,e) = 0

where W(x,e) = v"(x,e) and |q(-,e)|0 = O(e?). In order to prove
AT A AN PN J‘.‘J‘.-, o RS fd'(d'-f~vf'v AL ARSI RN
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' |q(-,e)|0 = O(e?) , we use two facts: 1) |V]se = O(e?).
5 2) £ (h()M (X + 26 (h(x),0h' () + £ (h(x),x) + f,(h(x),x)h"(x) = 0. Hence,
]
: employing Lemma 6.3 again, one obtains
W
| |W(-,€)[g¢ € c]al-,€)|y = ce?
)
)
and in particular |v"(-,e)|0 ¢ ce?.  Therefore, |w(-,e) - h(-)|2 ¢ ce2, which
:_ proves part (i). Part (iv) follows from part (i) and the estimate |W(-,e)|2'e £
ce2. This completes the proof of Theorem 6.2.
: We now proceed to:
l‘
A
N
n Proof of Theorem 6.1. By using the functions wi(x,e), i = 0,1 in Theorem 6.2,
X let us define:
W(x,€) = w,(x,€) - wy(x,e).
.'
! We can assume that |W(x,e)| »M > 0, ¢ €[0,6,)] for some positive constant M.
b/
b If we change variables in (6.1) by u |[— W(x,€)u + wo(x,e), and multiply the result
]
by W(x,¢), then the new function u is subject to the equation
d
] -
. (6.8) Wix,e)? /8t = @(x,eu’)’ + f(ux,e)
:: and the boundary conditions in (6.2), where the functions a(x,e) and ~f(u,x,e)
are given by:
0 3(x,€) = a(x)W(x,e)?
[ -~ 2 [ ’ 2 ' [
f(u,x,6) = W(x,e)[e’(a(x)W (x,€)) + e“(a(x)w(x))
Y + E(W(x,Ou + wy(x,6),X)]
/ These functions satisfy the conditions below:
'
b
]
h)
W Ty ‘\’
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a) a(-,-) =[-1,1] x [0,e;] R is C? in (x,€)
and
f(-,-») : Rx[-1,]] x [0,e,] ~R is C° in u and C? in (x,e).
b) There exists a positive constant 8, such that
a(x,e) » a, (x,e) € [-1,1] x [0,¢]
c) f-:(i,x,e) =0,i=20]1, ¢ € [0,¢,].
d) There exists a positive constant B such that
f-"u(i,x,e) € -382, (x,¢) € [-1,1] x {0,€,], i = O,L.
e) If J(x) is defined by J(x) = [}f(s,x,0)ds, then, the conditions for J(x) in

(B-3)' remain satisfied for J(x) and [if(x,;s0)ds <0 for u € (0,1).

In fact a) is the consequence of Theorem 6.2 and b), ¢) and d) follow from
the conditions (B-1) and (B-2) with the fact that w(x,e), i = 0,1, are
equilibrium solutions of (6.1), (6.2). As for the property e), it suffices to notice:

1

W(x,0) If(W(x,O)u + wy(x,0), x)du
0

I(x)

hl(x)
L f(s,x)ds = J(x).
o(x)

The conditions a) through e) above are sufficent for the procedures in §2
through §5 to work. Then, transforming back to the original variables by

u |— [u - wy(x,€)]/W(x,6) one can complete the proof of Theorem 6.1.

Remark 64. Theorem 6.2 was previously proved by Fife {1974]. Our proof is
different from his in that we are free from the maximal principle in order to

obtain uniform invertibility of the linear operator A(e).
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Remark 6.5. One cannot apply the procedures up through §5 directly to prove A !
Theorem 6.1. The difference between the problems in §5 and §6 lies in that
d
u = 0,1 are equilibrium solutions of (l.1), (1.2), but h(x), i = 0,1, are not N
o
equilibrium solutions of (6.1), (6.2). Theorem 6.2 plays a role to bridge the gap ]
between them. ..
w5
N
"
Remark 6.6. Theorem 6.1 could be more generalized. For instance, it still
remains true when hi(x), i = 0,1 are defined on the unions of subintervals,
n.
say @ = _ul1 Iij, i=01 0 vQa =([11] with any two adjacent subintervals .
= .
I, and L being overlapped. - oy
Remark 6.7. The idea developed in the present paper may prove useful in {
‘L
order to show the existence of transition layers and their stability for equations M
in several space dimensions. *
2
‘(
Remark 6.8. The methods presented in Sections 2 - 6 apply to show the .
existence of Neumann boundary layers and interior double layers. Specific
feature of these types of solutions is that they are unstable. Boundary layers .
turn out to be rather easy to handle because the linearized operator £¢ '_-"
around approximate solutions does not have small eigenvalues approaching zero N,
ot
- ~
as € 0. N
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